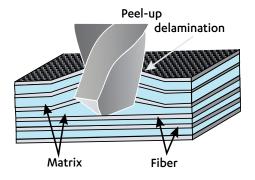
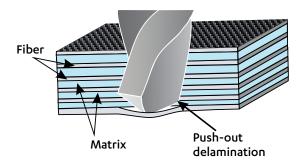


Drilling of composite materials

A high performance drill




Machining of composite materials

One problem

Carbon or Glass Fiber Reinforced Plastics (CFRP/GFRP) are very hard to machine. The drilling efficiency is reduced and delamination problems occur frequently.

As shown in the picture below, delamination may happen at two levels: at the entry of the drilled hole (peel-up delamination) and at the exit periphery of the drilled hole ("push out" delamination).

One solution

- Bélet has developed a custom tool with specific carbide, geometry and coating for composite materials.
- This tool allows high speed drilling of thousands of holes in GFRP without experiencing delamination issues.

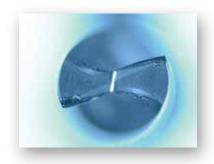
This tool has been tested along with 12 competitors. Bélet's drill obtained the best results!

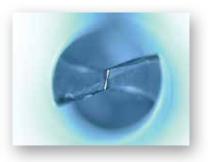
Tool

Bélet's drill REF 300

Through-hole drilling

1.6 mm


Hole tolerance


± 0.05 mm

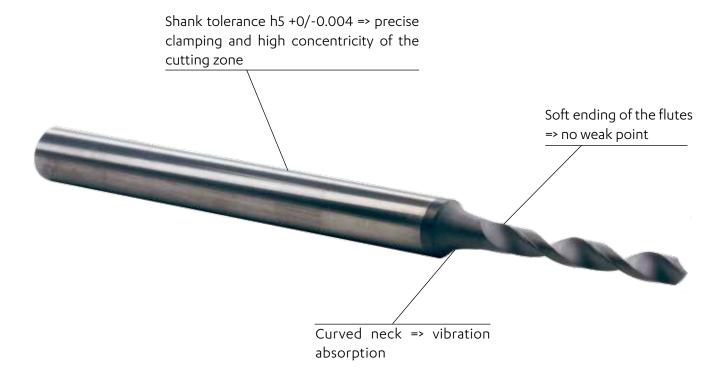
Results

	Drill von Bélet REF 300	Competitor A
# holes	10'000	10'000
Conical from	All holes OK	3'000
Out of tolerances from hole n°	All holes OK	5'000
Burr on top from hole n°	All holes OK	2'400
Bottom burr from hole n°	6′600	3'000
Number of good holes	6′600	3'000
Tool wear after 10'000 holes	Good	Highly worn

Drill Bélet REF 300: tool wear after 10'000 holes

Observations:

• After 10'000 holes, only the cutting edge is worn. Other edges are sharp


facebook.com/LouisBelet

The tip is intact

- The radial relief is present \Rightarrow drilling \emptyset is correct
- The coating is still present

Main features

High quality micro grain solid carbide

- Chosen for its hardness and high tenacity
- Allows also a flexibility of the drill

Tight geometric tolerances

- Centered tool sharpening
- Less constraints when drilling

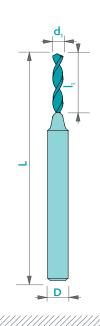
Polished surface

- Allows a good chip evacuation
- Sharp cutting edges

Specific coating

- Reduces friction coefficient
- High reduction of the tool war

Material	Vc [m/min]
Composite materials	200


Tolerances

d₁: +0 -0.004

D: h5

 d_1 D 0.80 8 3.175 38 0.90 8 3.175 38 1.00 10 3.175 38 1.10 10 3.175 38 1.20 10 3.175 38 1.30 10 3.175 38 1.40 10 3.175 38 1.50 10 3.175 38 1.55 10 3.175 38 1.60 10 3.175 38 3.175 38 1.65 10 1.70 10 3.175 38 1.75 10 3.175 38 1.80 10 3.175 38 1.85 10 3.175 38 3.175 38 1.90 10

Prices
and other
dimensions
available upon
request

10

10

3.175

3.175

38

38

1.95

2.00